G(x)=2x^2+3x-3

Simple and best practice solution for G(x)=2x^2+3x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for G(x)=2x^2+3x-3 equation:



(G)=2G^2+3G-3
We move all terms to the left:
(G)-(2G^2+3G-3)=0
We get rid of parentheses
-2G^2+G-3G+3=0
We add all the numbers together, and all the variables
-2G^2-2G+3=0
a = -2; b = -2; c = +3;
Δ = b2-4ac
Δ = -22-4·(-2)·3
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{7}}{2*-2}=\frac{2-2\sqrt{7}}{-4} $
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{7}}{2*-2}=\frac{2+2\sqrt{7}}{-4} $

See similar equations:

| 4p-111-p=2+p-20 | | 5.2x-4.3=6.1 | | x+(x-3)+65=180 | | 2x+20+2x-24=180 | | y/5-10=50 | | 8x+6=8x42 | | 3(j+41)35=j | | (2x)+(x-5)+(x-23)=180 | | (2x)+(x-5)+(x-23)=360 | | (2x)(x-5)(x-23)=360 | | 26=x/7+3 | | (2x)(x-5)(x-23)=90 | | 7x=9x+36 | | (2x)(x-5)(x-23)=180 | | 5x+6=3x=7 | | (2x)=(x-5)=(x-23) | | .25(16x-9)=-10.15-5.7 | | (2x)=(x-5)(x-23) | | 4-x3(4-2)=x | | 2(7y-11)=5y+5 | | 3p+3=-5p+3(p-4) | | 2(7y-11)=5y+y | | 9x+36=7x | | 3(6-4x)=2(9-6x) | | x^2-4,5x=0 | | 2x-2x+5x=0 | | 4i+3=2i+21 | | (4x)=(2x+20) | | 11x=114.115 | | 11x^2-3x-1=0 | | x2+(5x)2-26=0 | | 9x-18=10x+3 |

Equations solver categories